Data Analytics an Introduction
Tuesday,06 September 2022 01:29 PM IST
Anupama Nair
The concept of big data has been around for years, most organizations now understand that if they capture all the data that streams into their businesses, they can apply analytics and get significant value from it. But even in the 1950s, decades before anyone uttered the term ‘big data’, businesses were using basic analytics i.e., essentially numbers in a spreadsheet that were manually examined) to uncover insights and trends.
“The new benefits that big data analytics brings to the table, however, are speed and efficiency”. A few years ago, a business would have gathered information, run analytics and unearthed information that could be used for future decisions, today that business can identify insights for immediate decisions. The ability to work faster and stay agile gives organizations a competitive edge they was not there before.
What is data analytics? It is the science of analyzing raw data to make conclusions about that information. Many of the techniques and processes of data analytics have been automated into mechanical processes and algorithms that work over raw data for human consumption. Data analytics is a broad term that encompasses many diverse types of data analysis. Any type of information can be subjected to data analytics techniques to get insight that can be used to improve things. Data analytics techniques can reveal trends and metrics that would otherwise be lost in the mass of information. This information can then be used to optimize processes to increase the overall efficiency of a business or system.
For example, manufacturing companies often record the runtime, downtime, and work queue for various machines and then analyze the data to better plan the workloads so the machines operate closer to peak capacity. Data analytics can do much more than point out bottlenecks in production. Gaming companies use data analytics to set reward schedules for players that keep the majority of players active in the game. Content companies use many of the same data analytics to keep you clicking, watching, or re-organizing content to get another view or another click.
Data analytics is important because it helps businesses optimize their performances. Implementing it into the business model means companies can help reduce costs by identifying more efficient ways of doing business and by storing large amounts of data. A company can also use data analytics to make better business decisions and help analyze customer trends and satisfaction, which can lead to new and better products and services.
The process involved in data analysis involves several different steps:
Data analytics is broken down into four basic types.
Data analytics underpins many quality control systems in the financial world, including the eternally popular Six Sigma Program. If you aren’t properly measuring something, whether it's your weight or the number of defects per million in a production line, it is nearly impossible to optimize it. Some of the sectors that have adopted the use of data analytics include the travel and hospitality industry, where turnarounds can be quick. The industry can collect customer data and figure out where the problems, if any, lie and how to fix them.
Healthcare combines the use of high volumes of structured and unstructured data and uses data analytics to make quick decisions. Similarly, the retail industry uses abundant amounts of data to meet the ever-changing demands of shoppers. The information retailers collect and analyze can help them identify trends, recommend products, and increase profits.
Data analytics is important because it helps businesses optimize their performances. Implementing it into the business model means companies can help reduce costs by identifying more efficient ways of doing business. A company can also use data analytics to make better business decisions and help analyze customer trends and satisfaction, which can lead to new—and better—products and services.
Data analytics is broken down into four basic types. Descriptive analytics describes what has happened over a given period of time. Diagnostic analytics focuses more on why something happened. Predictive analytics moves to what is likely going to happen in the near term. Finally, prescriptive analytics suggests a course of action.
Data analytics has been adopted by several sectors, such as the travel and hospitality industry, where turnarounds can be quick. This industry can collect customer data and figure out where the problems, if any, lie and how to fix them. Healthcare is another sector that combines the use of high volumes of structured and unstructured data and data analytics can help in making quick decisions. Similarly, the retail industry uses numerous amounts of data to meet the ever-changing demands of shoppers.
Comments (0)